
Systems Biology – Lecture 3
Positive feedback, bistability, differentiation, and oscillations



In the last lecture, we saw how negative 
feedback speeds up response times

Rosenfeld et al. 2002



The speed-up of responses can be captured 
by rate plots

Baseline model:
�̇� = 𝛼 − 𝛾𝑥

Neg. feedback:

�̇� = 𝑉
𝑘!

𝑘! + 𝑥!
− 𝛾𝑥



What about positive feedback?

Baseline model:
�̇� = 𝛼 − 𝛾𝑥

Neg. feedback:

�̇� = 𝑉
𝑘!

𝑘! + 𝑥! − 𝛾𝑥

Pos. feedback:

�̇� = 𝑉
𝑥!

𝑘! + 𝑥!
− 𝛾𝑥



Linear (n=1) positive feedback slows down 
responses, and stabilizes 𝑥 = 0

Baseline model:
�̇� = 𝛼 − 𝛾𝑥

Linear pos. feedback:

�̇� = 𝑉
𝑥

𝑘 + 𝑥 − 𝛾𝑥



Another way to look at the dynamics of the 
convergence to steady-state is to consider the 
potential

�̇� = −
𝜕𝑈
𝜕𝑥



For a simple production-removal system, we 
have a quadratic potential

�̇� = −
𝜕𝑈
𝜕𝑥

𝑈!"#$ 𝑥 = −𝛼𝑥 +
𝛾𝑥%

2
+ 𝐶



Steady-states are local minima of the 
potential

�̇� = −
𝜕𝑈
𝜕𝑥

𝑈!"#$ 𝑥 = −𝛼𝑥 +
𝛾𝑥%

2
+ 𝐶



Positive and negative feedback make the
potential shallower/steeper

�̇� = −
𝜕𝑈
𝜕𝑥

𝑈!"#$ 𝑥 = −𝛼𝑥 +
𝛾𝑥%

2
+ 𝐶

𝑈&$' 𝑥 = −𝑘	𝑉 log 𝑘 + 𝑥 	+
𝛾𝑥%

2
+ 𝐶

𝑈()# 𝑥 = 𝑘	𝑉 log 𝑘 + 𝑥 	− 𝑉𝑥 +
𝛾𝑥%

2
+ 𝐶



Cooperative positive feedback can destabilize the system to 
the extent that new steady-states are formed (bistability)



Bistability depends on parameter values

• Curves intersect at 𝑥 = 0, and then possibly at 𝑥 ≈ 𝑘 and 𝑥 ≈ 7
8

• Bistability requires that these would be solutions, i.e. that 𝑉	⪆	𝛾𝑘

�̇� = 𝑉
𝑥!

𝑘! + 𝑥! − 𝛾𝑥, n ≫ 1



Bistable switches can act as long-term 
memory units

�̇� = 𝐼 𝑡 + 𝑉
𝑥!

𝑘! + 𝑥!
− 𝛾𝑥



The process of the creation / elimination of (pairs 
of) fixed points is known as a saddle-node 
bifurcation



The input I acts as a control parameter for the 
saddle node bifurcation
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Bistable switches are a simple model for cell 
fate induction



Oocyte in Xenopus maturation is a model for 
cell fate induction

Ferrell JE Jr. Xenopus oocyte maturation: new lessons from a good egg. Bioessays. 1999



Xenopus oocyte maturation occurs following a 
transient increase in progesterone levels

Ferrell JE Jr, Pomerening JR, Kim SY, Trunnell NB, Xiong W, Huang CY, Machleder 
EM. Simple, realistic models of complex biological processes: positive feedback 
and bistability in a cell fate switch and a cell cycle oscillator. FEBS Lett. 2009



Xenopus oocyte maturation is controlled by 
activation of the MAP pathway

Adapted from Ferrell, Systems Biology of Cell Signaling, 2022



Activation of the MAPK pathway is all-or-none, 
which is puzzling in a linear signalling cascade

Ferrell JE Jr, Pomerening JR, Kim SY, Trunnell NB, Xiong W, Huang CY, Machleder 
EM. Simple, realistic models of complex biological processes: positive feedback 
and bistability in a cell fate switch and a cell cycle oscillator. FEBS Lett. 2009



Activation in the MAPK pathway is highly 
cooperative

Ferrell and Ha, Trends Biochem. Sci. 2014



Activation of the MAPK cascade increases the accumulation 
of Mos2, resulting in positive feedback

Treatment with progesterone

Treatment with phosphorylated MAPK

Matten WT, Copeland TD, Ahn NG, Vande Woude GF. Positive feedback between 
MAP kinase and Mos during Xenopus oocyte maturation. Dev Biol. 1996



Coopertive dynamics and positive feedback result 
in a bistable switch with irreversible activation

Ferrell JE Jr, Pomerening JR, Kim SY, Trunnell NB, Xiong W, Huang CY, Machleder 
EM. Simple, realistic models of complex biological processes: positive feedback 
and bistability in a cell fate switch and a cell cycle oscillator. FEBS Lett. 2009



Interim summary

• Positive feedback can slow down responses
• Cooperative positive feedback generates multistability
• A simple (1d) circuit with cooperative positive feedback can act as a 

memory unit for transient stimulus



The bifurcation can be captured by changes 
to a potential landscape



A classic and common conceptual framework / 
metaphor for cellular differentiation is the 
Waddington landscape

Ferrell JE Jr. Bistability, bifurcations, and Waddington's 
epigenetic landscape. Curr Biol. 2012



From the perspective of dynamical systems, we 
can think of the Waddington landscape as changes 
in the potential landscape with time/input

Ferrell JE Jr. Bistability, bifurcations, and Waddington's 
epigenetic landscape. Curr Biol. 2012



Cell-fate induction through saddle-node 
bifurcations does not correspond to the 
bifurcations of the Waddington landscape

Ferrell JE Jr. Bistability, bifurcations, and Waddington's 
epigenetic landscape. Curr Biol. 2012



Bifurcations as in the Waddington lanscape 
correspond to pitchfork bifurcations, which rely on 
symmetry and are commonly observed in physics 

Ferrell JE Jr. Bistability, bifurcations, and Waddington's 
epigenetic landscape. Curr Biol. 2012



Supercritical pitchfork bifurcation is given by 
the normal form �̇� = 𝑟𝑥 − 𝑥!



Slight disturbances to symmetry transform a 
pitchfork bifurcation to a saddle-node bifurcation



Interim summary

• Cell-fate induction involves a saddle node bifurcation
• dynamics are captured by the normal form �̇� = 𝑥0 − 𝑟 (where r is the 

distance from bifurcation)

• Potential landscape: disappearance of a valley 
• The classic Waddington landscape metaphore involves splitting of 

valleys, more appropriate to supercritical pitchfork bifurcation
• Dynamics are captured by �̇� = 𝑟𝑥 − 𝑥1

• Pitchfork bifurcation requires symmetry and is structural unstable, 
saddle node is generic for genetic networks



In addition to the irreversible, bistable switch, a 
reversible hysteretic switch is also a possible 
regime of the system
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Hysteretic systems have “saw-tooth” 
dynamics
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We can imagine, possibly, an oscillator based 
on hysteretic dynamics
• What if instead of an input, we consider the 

control parameter as a dynamic variable?
• We now denote this variable as x and consider 

the “output” to be y
• y is hysteretic and there is negative feedback 

with x
• When y is low, x is induced, and drives y to 

increase
• When y is high, x is inhibited and y returns to 
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Oscillatory dynamics of cell division 
dominates the early development of Xenopus



Cyclins, which regulate cell cycle transitions in the 
Xenopus embryo, show hysteretic dynamics

Pomerening et al. Nat. Cell Biology 2003



A simple model that combines positive and 
negative feedback captures dynamics 

�̇� = 𝛼9 − 𝛾9𝑥
𝑦:

𝑘9: + 𝑦:

�̇� = 𝛼% 𝑎 +
𝑦:

𝑘%: + 𝑦:
𝑥 − 𝑦 − 𝛾%𝑦

accumulation switch off

positive feedback negative feedback



Model implements a relaxation oscillator
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The period of the oscillations can be adjusted 
by adjusting the production rate of x
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Parametrized model has a single unstable 
fixed point
• Nullclines intersect at a single point, the 

Jacobian has positive real eigenvalues
• Fixed point is therefore unstable
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Existence of limit cycle can be inferred from 
Poincaré–Bendixson theorem
• If the dynamics on a plane are confined to a closed region without a 

fixed point, they will converge to a limit cycle
• Highly applicable to biology, as dynamics are confined to positive 

number of molecules, and cannot diverge to infinity



Stability depends on model parameters, with a 
Hopf bifurcation occuring as parameters change
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Hopf bifurcation is a simple two dimensional 
bifurcation where a pair of eigenvalues crosses the 
real axis together 
• Supercritical hopf bifurcation captures a stable fixed point losing 

stability and becoming a limit cycle
• Normal form (in polar coordinates) �̇� = 𝜇 − 𝑟% 𝑟, �̇� = 𝜔 
• 𝜇 is distance from bifurcation
• 𝜔 is angular velocity



Summary

• Positive feedback destabilizes fixed points and can generate bistability
• Positive feedback allows the long-term stabilization of cell fate after 

induction
• At the basis of this is a saddle-node bifurcation which creates new 

fixed points, and may result in an irreversible transition
• Circuits with positive feedback can become hysteretic 
• The combination of such hysteretic circuits with negative feedback 

can result in oscillations with adjustable period


