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1 Motivation

Autoregulation, especially negative autoregulation, is a common regulatory motif in the transcrip-

tional network of E. coli. In the analysis of the transcriptional network, which had 424 nodes

(operons) connected by 519 edges (transcriptional interactions), it appeared 40 times - much more

than the 1-2 expected in the null model! Amongst these, 32 were negative autoregulation.

While we don’t know the evolutionary pressures that shaped this network, it is unlikely that

these interactions would be overrepresented to such a degree if there was no selective advantage.

Promoter specificity can be easily adjusted by evolutionary forces, so we might hypothesize that

autoregulation provides some benefit to the organism.

What could be the evolutionary advantage of this motif? To start addressing this question, we

will consider the dynamics of protein abundance during bacterial growth.

2 Dynamics of protein abundance during steady growth

Let’s consider a population of bacteria of size N growing at some rate γ:

Ṅ = γN (1)

The population of bacteria grows as:

N(t) = N(0)eγt (2)

And let’s consider some protein of interest X, with an production rate α (unit - proteins):

Ẋ = αN (3)

We will assume thatX is stable and that it is not actively degraded by the bacteria. Then dynamics

of the concentration of the protein x = X
N is given by:

dx

dt
=

dX

dt

1

N
− X

N2

dN

dt
= α− γ

X

N
= α− γx (4)

The dynamics of Eq. 7 can be solved:

x(t) =
α

γ
+

(
x(0)− α

γ

)
e−γt (5)

We can see that the initial conditions decay at rate e−γt, which corresponds to the

growth rate of the bacteria. Initial conditions will decay to half of their original level at time

t = γ−1 log 2. Thus, the inverse of the growth rate, γ−1, provides the timescale for the convergence

to the steady-state given by x = α
γ . In bacteria such as E. coli, the doubling time is around an

hour.
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What happens if the bacteria need to respond and adjust their gene expression faster than this?

3 Negative autoregulation speeds up responses

The presence of transcriptional regulation adjusts α so that now is a function of x, that is, α = f(x).

What would be a favorable f(x)? Intuitively, it is clear that as the removal rate is fixed, and for a

fixed steady-state abundance, the response rate can be improved by having a negative dependence

of the production rate on x (see Figure 1).

Figure 1

To make this more precise, we need to consider how this would be implemented in a tran-

scriptional network. Transcriptional activation and repression are captured by hill functions:

f(x) = V xn

kn+xn (activation) and f(x) = V kn

kn+xn (repression). Hill functions are sigmoidal func-

tions that capture the fraction of time the promoter is bound by the transcription factor. The

parameter V (proportional to) the maximal transcription rate. The parameter k captures the

concentration of transcription factor needed to achieve half-maximal transcription. The parameter

n corresponds to cooperativity (it is also known as the hill coefficient). It captures non-linearities

in the activation/repression, which can happen, for example, when bound transcription factors

increase the rate of further binding of other transcription factors. For negative autoregulation, we

have the dynamics:

ẋ = V
kn

kn + xn
− γx (6)

It is indeed clear that for a similar steady-state, negative autoregulation allows for much more

rapid responses (Figure 1).

Figure 2
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How much more rapid are the responses? Taken to an extreme, we can consider (for a very

large n) a step-like repressive function, given by f(x) = V when x < k and f(x) = 0 when x > k.

This function locks the steady-state of x at around x = k, with the dynamics (from x = 0) given

by:

dx

dt
= V − γX (7)

Now, let’s assume the promoter is quite strong, so V ≫ γk. In this case, we can simply take
dx
dt ≈ V . There would be an approximately linear accumulation of protein until x = k at rate V .

The timescale to reach the steady state at x = k would therefore be around k
V , compared with the

timescale of γ−1 of the original system. A strong promoter, combined with negative autoregulation,

can provide a substantial speed-up of these responses.

Figure 3

So a strong promoter and strong auto-repression allow for rapid responses at a rate that is

effectively decoupled from the growth rate of the cell. Are there other beneficial aspects to such

regulation?

Let’s consider the effect of negative autoregulation on the steady-state. Without autoregula-

tion, the steady state would depend on both the production rate α and the growth rate γ. These

parameters are likely to have some variability or uncertainty. The growth rate may change, depend-

ing on the growth conditions. The production rate may fluctuate, for example, due to changes in

the resources available for transcription. There would therefore be high uncertainty in the steady

state of x.

For negative autoregulation, especially when there is strong cooperativity (large n), the steady-

state only depends on k and is almost independent of the other parameters. k is a biochemical

parameter that depends on the properties of the promoter and we do not expect that it would

fluctuate over time. Negative autoregulation, therefore, allows the system to have a robust steady-

state. Robustness is a key aspect of systems biology, and we will discuss it extensively in the first

half of this course.
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Figure 4: Negative autoregulation in a synthetic biological circuit, from Rosenfeld et al.

3.1 Negative feedback can result in oscillatory dynamics

Is there any downside to negative feedback? One important aspect is that negative feedback may

cause responses to overshoot, undershoot, or even destabilize the dynamics. These interesting

phenomena cannot be captured in one-dimensional systems, so we will consider systems with more

than one component. As a simple example, consider the following two-component negative feedback

circuit:

dx

dt
= γ1(y − x) (8)

dy

dt
= γ2(V

kn

kn + xn
− y) (9)

For large cooperativity, there would be a fixed point (a solution to the equations) around

y = x ≈ k. Recall that to analyze the stability around a fixed point, we need to linearize the

system and study the eigenvalues of the Jacobian.
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Linear stability analysis. Consider a one-dimensional system ẋ = f(x). The system describes

a flow on a line (the x-axis), where for every point there is either a flow to the right f(x) > 0, to

the left f(x) < 0, or no change f(x) = 0. Let x0 be a fixed of f (so f(x0) = 0), and consider the

Taylor expansion of f around x0. When f ′(x0) ̸= 0 we will ignore higher order terms:

ẋ = f(x) =���f(x0) + (x− x0)f
′(x0) + ... ≈ (x− x0)f

′(x0) (10)

Small perturbations around x = x0 grow or decay like ef
′(x0). Therefore, when f ′(x0) < 0 the

fixed point is stable, while when f ′(x0) > 0 it is unstable. When f ′(x0) = 0, on the other hand,

the point critical - in this case, we cannot ignore the higher order terms of the Taylor expansion.

More generally, consider a high dimensional ODE system, given by a collection of variables x =

(x1, . . . , xn) and time-evolution rules f = (f1, . . . , fn). Let x∗ be a fixed point of the system, and

let’s denote δi = xi − x∗
i as a small perturbation away from the fixed point (δ = x − x∗). To get

the time-evolution of the perturbation we can linearize each of the dynamical equations:

δ̇ = J∗δ (11)

Where J is the Jacobian estimated around the critical point:

J∗ =


∂f1
∂x1

(x∗) . . . ∂f1
∂xn

(x∗)
...

. . .
...

∂fn
∂x1

(x∗) . . . ∂fn
∂xn

(x∗)

 (12)

Each solution of Eq. 11 can be written as a linear combination eλit, where λi are the eigenvalues of

J∗. In general, each λi can be a complex number. The contribution of its imaginary part b = Im(λi)

is an oscillating component ebti = cos bt+ i sin bt. The real part b = Re(λi), however, contributes

a component that increases exponentially with b > 0 or decreases with b < 0. Therefore, if the

eigenvalues of J∗ have negative real parts then x∗ is stable; if at least one has a positive real part,

the fixed point is unstable. The case of eigenvalues which are zeros will again be considered as

special and we will have to consider the contribution of the nonlinear terms.

The Jacobian of the system is given by:

J =

[
∂
∂x (γ1(y − x)) ∂

∂y (γ1(y − x))
∂
∂x (γ2(V

kn

kn+xn − y)) ∂
∂y (γ2(V

kn

kn+xn − y))

]
=

[
−γ1 γ1

−γ2k
nV nxn−1

(kn+xn)2 −γ2

]
(13)

J∗ =

[
−γ1 γ1

−ν
4γ2 −γ2

]
(14)

where ν = nV
k corresponds to the strength of the feedback. The eigenvalues of the system are

λ1 = 1
2

(
−
√
(γ1 − γ2) 2 − γ1γ2ν − γ1 − γ2

)
, λ2 = 1

2

(√
(γ1 − γ2) 2 − γ1γ2ν − γ1 − γ2

)
. We can

make the following observations:

• When the timescales γ1, γ2 are very different, and feedback strength is moderate, the eigen-

values will be real (and the dynamics overdamped), with the slow timescale dominating the

response to perturbations.

• When they are similar, e.g. γ1 = γ2 = γ, the eigenvalues are λ1,2 = −γ
(
1±

√
−ν
2

)
. In this

case the dynamics would be damped oscillatory for any feedback strength (ν > 0), with the

frequency of the oscillations increasing with feedback strength. In this case, we expect the

response to overshoot.
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Figure 5

An example of damped oscillations appears in Figure 5, which demonstrates how stronger

feedback (due to a steeper hill coefficient) results in both faster responses, and a larger

overshoot of the dynamics.

Damped oscillations are a hallmark of negative feedback. They can be observed even in the

simple implementation of negative auto-regulation by Rosenfeld et al. (Figure 4). Overshoot-

ing may be detrimental (this is clear in the glucose-insulin system, which we will discuss later

on), yet the benefits may be offset by the importance of rapid responses. As an example,

populations of cells in tissues are maintained in tight homeostasis. After an injury, they

repopulate the tissue. The recovery, over weeks, bears the hallmarks of damped oscillations

due to negative feedback (Figure 6).

Figure 6: Damped oscillations in the recovery of stem cells in the mouse germline, from Kitadate et al.

4 Summary

Negative autoregulation allows systems to respond more quickly to perturbations. This is by

implementing a strategy based on strong activation combined with a strong ”brake”. Delays cause
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systems with negative feedback to have damped oscillations (spiral fixed point) which can be

associated with under/overshoots in the system.
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